

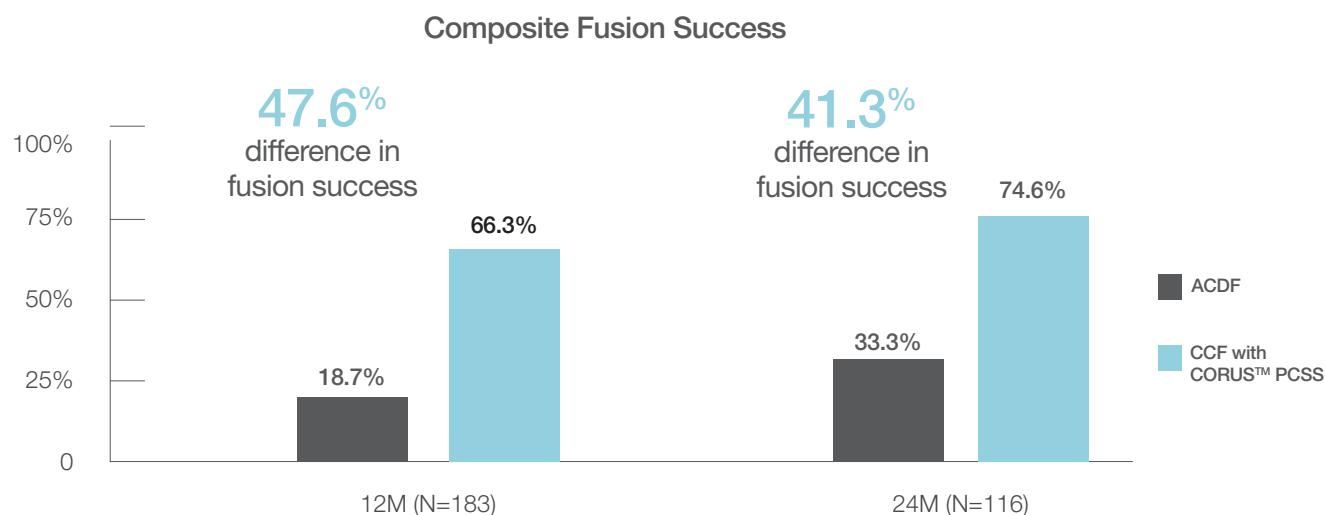


## The FUSE Study: Interim Analysis of an FDA IDE Trial

The safety and efficacy of a Posterior Cervical Stabilization System when used as an adjunct to anterior cervical discectomy and fusion for multilevel cervical degenerative disease.

IDE G190235, NCT 04229017




# Table of Contents

|                          |    |
|--------------------------|----|
| Key Trial Results        | 2  |
| Study Overview           | 4  |
| Interim Analysis Results | 6  |
| Study Endpoints          | 6  |
| Additional Clinical Data | 9  |
| Conclusion               | 12 |
| Appendix                 | 13 |

## Key Trial Results

Interim analysis of the FUSE Study shows that compared to anterior cervical discectomy and fusion alone, circumferential cervical fusion (CCF) with CORUS™ Posterior Cervical Stabilization System (PCSS) demonstrates:

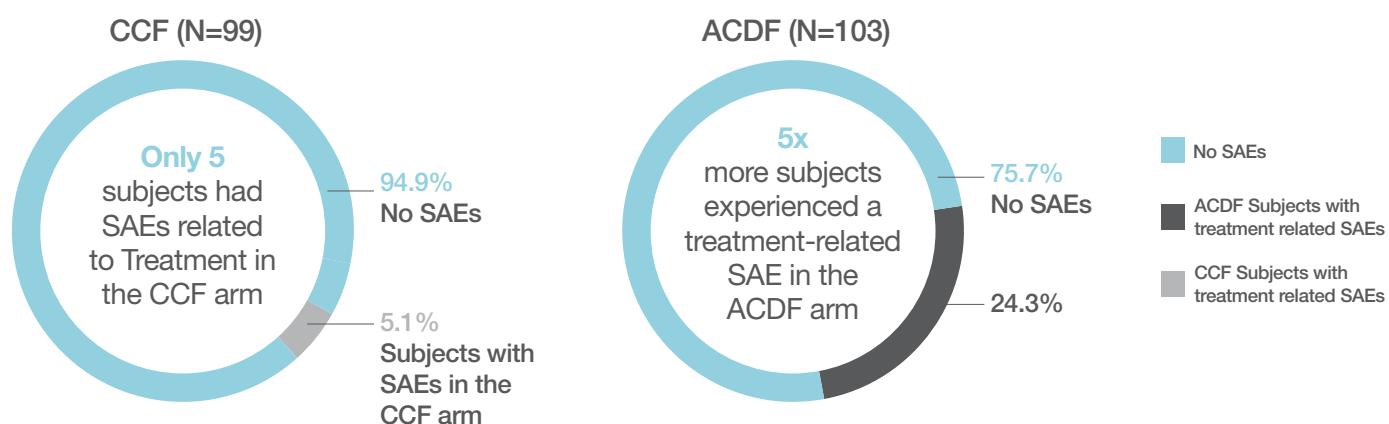
### Superiority in fusion at 12 months



# Key Trial Results

## Statistically significant difference in Composite Safety Endpoint at 24 months

|                    | 24-Month Composite Safety Endpoint | Fusion Success    | NDI Success       | Neurological Success | Absence of SSI    |
|--------------------|------------------------------------|-------------------|-------------------|----------------------|-------------------|
| <b>CCF (N=59)</b>  | <b>50.8% (30)</b>                  | <b>74.6% (44)</b> | <b>69.6% (39)</b> | <b>93.0% (53)</b>    | <b>96.6% (57)</b> |
| <b>ACDF (N=57)</b> | 22.8% (13)                         | 33.3% (19)        | 57.7% (30)        | 96.1% (49)           | 77.2% (44)        |
| <b>p-value</b>     | 0.002                              | <0.001            | 0.196             | 0.682                | 0.002             |


21.6% of the 12-month ACDF cohort required a second surgery

|             | Total SSIs | Revision | Removal  | Supplemental Fixation |
|-------------|------------|----------|----------|-----------------------|
| <b>CCF</b>  | <b>1</b>   | <b>0</b> | <b>1</b> | <b>0</b>              |
| <b>ACDF</b> | <b>23</b>  | <b>1</b> | <b>0</b> | <b>22</b>             |

 **21.6%** of all ACDF patients at interim analysis required a second surgery

No increase in length of stay or device/procedure-related adverse events

|                              | ACDF           | CCF w/ PCSS    |
|------------------------------|----------------|----------------|
| <b>Median length of stay</b> | <b>1 night</b> | <b>1 night</b> |



# Study Overview

## Trial Design

The FUSE Study is a randomized, prospective, multicenter, controlled FDA IDE trial comparing an investigational treatment, tissue-sparing CCF performed with CORUS™ PCSS in conjunction with plated anterior cervical discectomy and fusion (ACDF), with the current standard of care (ACDF alone).

### Subject Participation Criteria

Subjects who meet the following criteria are considered eligible for the trial\*:

- Age **18-80 years** (skeletally mature)
- Indicated for ACDF treatment of degenerative disc disease (DDD) between and including **C3-C7 at 3 contiguous levels**
- A **Neck Disability Index (NDI) Score of  $\geq 15/50$**
- **Unresponsive to non-operative, conservative treatment** (rest, heat, electrotherapy, physical therapy, chiropractic care, and/or analgesics)

\*See appendix for the full list of inclusion and exclusion criteria.

### Endpoint Definitions

Subjects were followed at protocol-defined intervals for 24 months, with the primary endpoint being fusion success determined at 12 months and the secondary endpoint being composite safety success determined from clinical and radiographic data collected through 24 months following index treatment.

A subject was considered a fusion success if there was:

- Evidence of bridging trabecular bone across endplates
- $<2^\circ$  total angular motion (from flexion to extension) for all levels treated

Safety success was based on a combination of:

- Fusion success at 24 months
- NDI success
- Neurological success
- The absence of secondary surgical intervention (SSI)



CCF procedure is performed using CORUS™ PCSS

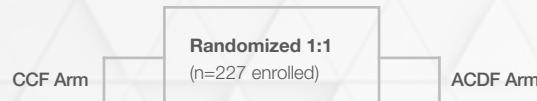
# Study Overview

## By the Numbers



1:1 randomization




227 subjects



114 in the CCF arm



113 in the ACDF arm



**CCF Arm (Investigational)**  
(n=114)

**ACDF Arm (Control)**  
(n=113)

**100 Subjects**  
in 12-Month Cohort  
**95** Completed Visits  
**1** Withdrawn by  
Investigator  
**1** Voluntarily Withdraw  
**3** Lost to Follow-up

**102 Subjects**  
in 12-Month Cohort  
**95** Completed Visits  
**3** Deaths  
**4** Lost to Follow-up

**59 Subjects**  
Completed 24 Months  
**57** Completed Visits  
**1** Voluntarily Withdraw  
**1** Lost to Follow-up

**57 Subjects**  
Completed 24 Months  
**43** Completed Visit  
**9** Completed as  
Cross-over after  
12 Months  
**2** Deaths  
**3** Lost to Follow-up



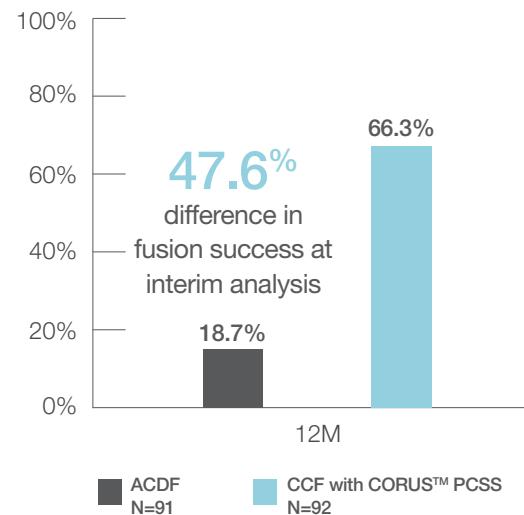
Subject status as of the December 29th, 2023 Interim Analysis.

## Subject Demographics

No statistically significant differences in patient demographics are present between arms.

|                              |                             | <b>CCF (N=114)</b> | <b>ACDF (N=113)</b> | <b>p-value</b> |
|------------------------------|-----------------------------|--------------------|---------------------|----------------|
| <b>Age Group</b>             | Age <65 Years               | <b>85 (74.6%)</b>  | 83 (73.5%)          | 0.849          |
|                              | Age >65 Years               | <b>29 (25.4%)</b>  | 30 (26.5%)          |                |
| <b>BMI Group (vs Median)</b> | BMI <30.5 kg/m <sup>2</sup> | <b>57 (50.0%)</b>  | 57 (50.4%)          | 0.947          |
|                              | BMI >30.5 kg/m <sup>2</sup> | <b>57 (50.0%)</b>  | 56 (49.6%)          |                |
| <b>Smoking Status</b>        | Smoker                      | <b>19 (16.7%)</b>  | 17 (15.0%)          | 0.738          |
|                              | Nonsmoker                   | <b>95 (83.3%)</b>  | 96 (85.0%)          |                |
| <b>Diabetes</b>              | Yes                         | <b>15 (13.2%)</b>  | 17 (15.0%)          | 0.683          |
|                              | No                          | <b>99 (86.8%)</b>  | 96 (85.0%)          |                |
| <b>Sex</b>                   | Male                        | <b>44 (38.6%)</b>  | 53 (46.9%)          | 0.206          |
|                              | Female                      | <b>70 (61.4%)</b>  | 60 (53.1%)          |                |

# Interim Analysis Results


## Study Endpoints

### Primary Endpoint: Fusion Success at 12M

#### Success Criteria

Range of motion (ROM) and bridging bone are both assessed at each of the 3 index levels, with all assessments needing to be successful for a subject to be considered a composite fusion success.

Determination of fusion success is made by an independent 3rd party core imaging lab, on CT scan, confirmed by 2 independent radiologists, based on evidence of bridging trabecular bone across interbody endplates and <2° segmental angular motion (range of motion, measured between flexion to extension) for all levels treated.



#### Results

CCF demonstrates superior fusion results at 12 months.

|                                        | ACDF (N=91) | CCF (N=92)        | p-value | Difference |
|----------------------------------------|-------------|-------------------|---------|------------|
| <b>Composite Fusion Success</b>        | 18.7% (17)  | <b>66.3% (61)</b> | <0.001  | +47.6%     |
| <b>Bridging Bone at all levels (N)</b> | 25.3% (23)  | <b>68.5% (63)</b> | <0.001  | +43.2%     |
| <b>ROM &lt;2° at all levels (N)</b>    | 51.6% (47)  | <b>80.4% (74)</b> | <0.001  | +28.8%     |
| <b>Fusion Failure at 1 level (N)</b>   | 46.2% (42)  | <b>22.8% (21)</b> | <0.001  | -23.4%     |
| <b>Fusion Failure at 2 levels (N)</b>  | 19.8% (18)‡ | <b>9.8% (9)</b>   | <0.001  | -10.0%     |
| <b>Fusion Failure at 3 levels (N)</b>  | 14.3% (13)  | <b>1.1% (1)</b>   | <0.001  | -13.2%     |

‡One ACDF subject failed primary endpoint due to a revision where anterior plate was extended as part of treatment for ASD, however all index levels were fused at month 12 follow-up.

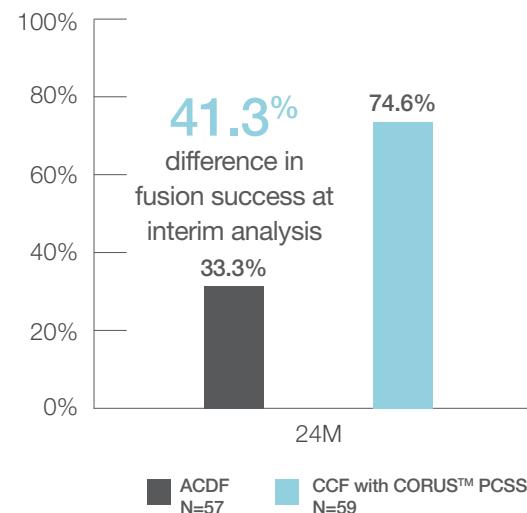
# Interim Analysis Results

## Study Endpoints

### Secondary Endpoint: Composite Safety Success at 24M

|                    | 24-Month Composite Endpoint | Fusion Success    | NDI Success       | Neurological Success | Absence of SSI    |
|--------------------|-----------------------------|-------------------|-------------------|----------------------|-------------------|
| <b>CCF (N=59)</b>  | <b>50.8% (40.7%)</b>        | <b>74.6% (44)</b> | <b>69.6% (39)</b> | <b>93.0% (53)</b>    | <b>96.6% (57)</b> |
| <b>ACDF (N=57)</b> | 22.8% (8.5%)                | 33.3% (19)        | 57.7% (30)        | 96.1% (49)           | 77.2% (44)        |
| <b>p-value</b>     | 0.002                       | <0.001            | 0.196             | 0.682                | 0.002             |

24-month data was collected as part of an interim analysis and does not represent all data from the ongoing FUSE Study.


### Metric: Fusion Success

#### Success Criteria

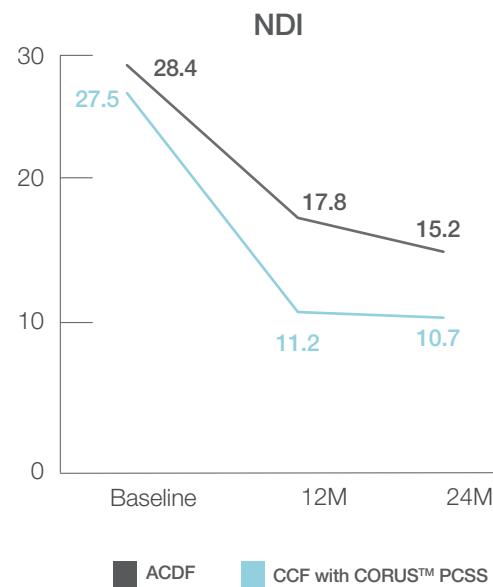
ROM and bridging bone are both assessed at each of the 3 index levels after 24 months, with all assessments needing to be successful for a subject to be considered a composite fusion success.

#### Results

With more than 100 subjects followed through 24 months in this interim analysis, the difference in the fusion rates was still 41.3% in favor of the CCF group over ACDF alone (74.6% vs 33.3%).



### Metric: Neck Disability Index


#### Success Criteria

NDI is measured using a subject-answered questionnaire, which assessed the effect of pain on daily life. Each of the 10 assessed criteria<sup>§</sup> receives a score from 0 to 5; the highest score (50 points) represents the most disabled. The final score can be converted to a percentage.

<sup>§</sup>NDI-assessed criteria includes pain intensity, personal care, lifting, reading, headaches, concentration, work, driving, sleeping, and recreation.

#### Results

Subjects in both groups reported improvement to NDI at 12 and 24 months at interim analysis.



# Interim Analysis Results

## Study Endpoints

### Secondary Endpoint: Composite Safety Success at 24M

|                                                                                       |                    |                   |
|---------------------------------------------------------------------------------------|--------------------|-------------------|
| <b>Metric: Neurological Success</b>                                                   | <b>CCF (N=59)</b>  | <b>93.0% (53)</b> |
| <b>Success Criteria</b>                                                               | <b>ACDF (N=57)</b> | 96.1% (49)        |
| Neurological success is defined as maintenance or improvement of neurological status. | <b>p-value</b>     | 0.682             |

#### Results

CCF resulted in no difference in negative neurological outcomes relative to ACDF alone.

### Metric: Subsequent Surgical Interventions (SSIs)

#### Success Criteria

Subjects treated with CORUS™ PCSS are compared to control subjects on the following metrics: revision, removal, supplemental fixation, and reoperation following surgery. Any related SSIs were deemed failures.

#### Results

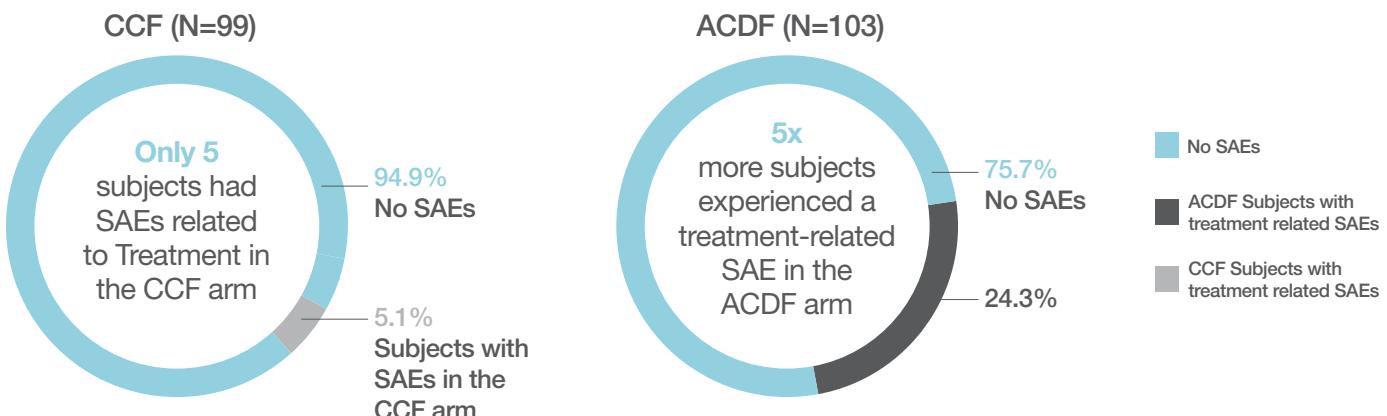
Over 22% of ACDF subjects (21.6% in the 12-month cohort and 22.8% in the 24-month cohort) required a second surgery vs 1.7% in the CCF group at 24 months.

|             | Total SSIs | Revision | Removal  | Supplemental Fixation |
|-------------|------------|----------|----------|-----------------------|
| <b>CCF</b>  | <b>1</b>   | <b>0</b> | <b>1</b> | <b>0</b>              |
| <b>ACDF</b> | <b>23</b>  | <b>1</b> | <b>0</b> | <b>22</b>             |

 **21.6%** of all ACDF patients at interim analysis required a second surgery

# Interim Analysis Results

## Additional Clinical Data


### Metric: Adverse Events

#### Success Criteria

Adverse events are logged at every point during the study. Event details, along with subject medical charts are presented to the Clinical Events Committee (CEC, independent, non-investigators) to adjudicate relationship to either ACDF and/or posterior cervical fusion (PCF) procedures and devices.

#### Results

Approximately 95% of subjects treated with CORUS™ PCSS experience ZERO serious device/procedure-related adverse events (SAEs).



### Metric: Osteolysis

#### Success Criteria

Osteolysis is assessed at month 12 and month 24 in both CCF and ACDF subjects.

#### Results

After 12 months, 8 subjects in the CCF arm have at least one level of suspected osteolysis compared to 41 in the ACDF arm. At month 24, results still indicate higher rates of osteolysis in the ACDF arm.

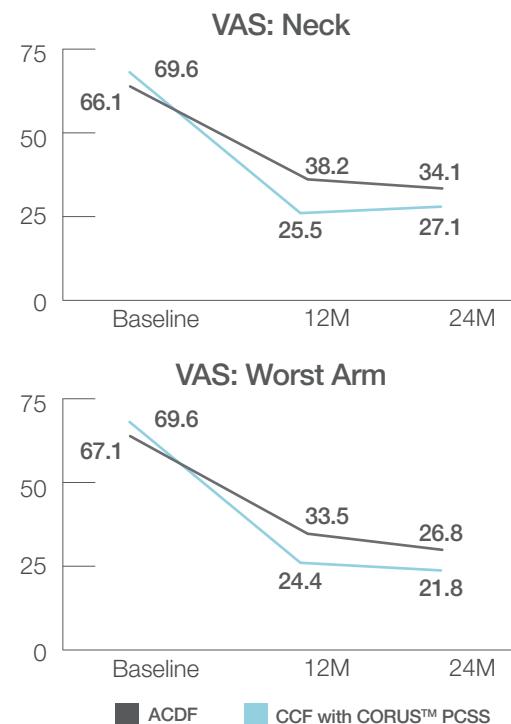
#### Rates of Reported Osteolysis

|                 | CCF WITH CORUS™ PCSS | ACDF Alone | p-value |
|-----------------|----------------------|------------|---------|
| <b>Month 12</b> | <b>8.7%</b>          | 45.1%      | <0.001  |
| <b>Month 24</b> | <b>11.1%</b>         | 35.7%      | 0.004   |

# Interim Analysis Results

## Additional Clinical Data

### Metric: Visual Analog Scale (VAS)


#### Success Criteria

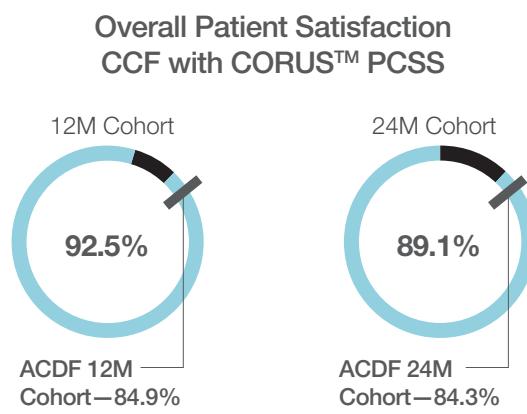
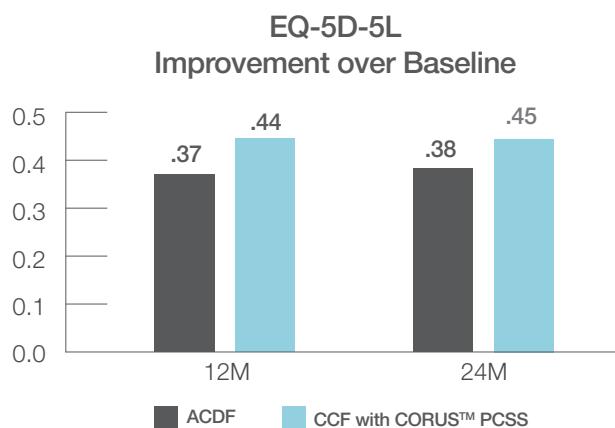
Subjects are asked to separately rate their neck and left and right arm pain. The VAS score is measured on a 100mm line with 'No Pain' on the left and 'Worst Possible Pain' on the right. The subject marks a point on the line that best represents their pain.

*Note: The combined arm score was based on the most symptomatic arm at baseline carried forward.*

#### Results

Subjects in both groups reported significant pain improvement in both arm and neck pain at 12 and 24 months.





### Metric: Patient Quality of Life (QoL) & Satisfaction

#### Success Criteria

The 5-level EQ-5D version (EQ-5D-5L) QoL questionnaire is administered at every study visit. Satisfaction questionnaires are completed at month 12 and month 24 visits.

#### Results

Subjects in the CCF arm reported significant improvements in EQ-5D-5L over baseline that were maintained at 24 months and reported an overall satisfaction rate of approximately 90%.



# Interim Analysis Results

## Additional Clinical Data

### Metric: Fusion Across Facet Joints

#### Success Criteria

For subjects returning for imaging visits at month 12 and month 24, CT-based evidence of bridging bone is assessed at the left and right facets for all CCF and Cross-over subjects confirmed by a 3rd party lab and 2 independent radiologists.

|                           | Left Side    | Right Side |
|---------------------------|--------------|------------|
| <b>Month 12</b>           | <b>82.2%</b> | 78.5%      |
| <b>Month 24</b>           | <b>93.2%</b> | 93.2%      |
| <b>Crossover Patients</b> | <b>95.2%</b> | 95.2%      |

#### Results

At month 12, 82.2% of levels exhibit contiguous bridging bone across the left facet, and 78.5% of levels exhibit contiguous bridging bone across the right facet. At month 24, these rates are 93.2% for both the left and the right.

Among the subjects treated with crossover procedures who have imaging at study conclusion, outcomes are available for 21 levels, with 95.2% of levels exhibiting bridging bone across both the left and the right facet.

### Metric: Perioperative Data

#### Success Criteria

CCF with CORUS™ PCSS is compared to traditional ACDF on health economics and resource use outcomes including blood loss, procedure duration, and length of stay (LOS).

#### Results

As expected, CCF with CORUS™ PCSS adds operative time and minor blood loss. However, adding PCF does not increase LOS.

|                                 | ACDF    | CCF w/ PCSS    | Difference    |
|---------------------------------|---------|----------------|---------------|
| <b>Operative time (minutes)</b> | 129.0   | <b>175.5</b>   | +46.5 minutes |
| <b>Estimated blood loss</b>     | 50 cc   | <b>60 cc</b>   | +10 cc        |
| <b>Median length of stay</b>    | 1 night | <b>1 night</b> | -             |

# Conclusion

**CORUS™ PCSS is a safe and effective surgical option indicated for 3-level ACDF for 3-level DDD, C3-C7**

**At 12 months, CCF with CORUS™ PCSS demonstrated:**

- Superior rates of fusion at 12 months compared to ACDF
- Lower rate of secondary surgical intervention compared to ACDF
- Meaningful reduction in neck and arm pain compared to baseline
- Significant improvement in quality of life

## Indications for Use, CORUS™ PCSS

CORUS™ Posterior Cervical Stabilization System (PCSS) is posterior spinal instrumentation with integrated screw fixation intended to provide immobilization and stabilization of spinal segments.

CORUS™ PCSS is placed through a posterior surgical approach in up to 3 consecutive levels of the cervical spine (C3-C7) and achieves bilateral facet fixation by spanning the facet interspace at each level with points of fixation at each end of the construct.

CORUS™ PCSS is intended as an adjunct to posterior cervical fusion (PCF) and is only intended to be used in combination with an anterior cervical discectomy and fusion (ACDF) at the same level(s).

CORUS™ PCSS is indicated for skeletally mature patients with degenerative disc disease (DDD). DDD is defined as radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies.

CORUS™ PCSS is to be used with autogenous bone and/or allogenic bone graft.

# Appendix

## Inclusion Criteria

- 1.** Age 18-80 years (skeletally mature)
- 2.** Indicated for ACDF treatment of degenerative disc disease (DDD) between and including C3-C7 at 3 contiguous levels as determined by the following:
  - a.** Diagnosis of radiculopathy, myelopathy, or myeloradiculopathy of the cervical spine, with pain, including at least one of the following:
    - i.** Neck and/or arm pain
    - ii.** Decreased muscle strength
    - iii.** Abnormal sensation including hyperesthesia or hypoesthesia; and/or abnormal reflexes
  - b.** Radiographically determined pathology at the levels to be treated correlating to primary symptoms including at least one of the following:
    - i.** Decreased disc height on radiography, computed tomography (CT), or magnetic resonance imaging (MRI) in comparison to a normal adjacent disc
    - ii.** Degenerative spondylosis on MRI
    - iii.** Disc herniation on MRI
- 3.** NDI Score of  $\geq 15/50$
- 4.** Unresponsive to non-operative, conservative treatment (rest, heat, electrotherapy, physical therapy, chiropractic care, and/or analgesics) for:
  - a.** At least 6 weeks from radiculopathy or myeloradiculopathy symptom onset; or
  - b.** Have the presence of progressive symptoms or signs of nerve root/spinal cord compression despite continued non-operative conservative treatment
- 5.** Reported to be medically cleared for surgery
- 6.** Physically and mentally able and willing to comply with the Protocol, including the ability to read and complete required forms and willing and able to adhere to the scheduled follow-up visits and requirements of the Protocol
- 7.** Written informed consent provided by subject

# Appendix

## Exclusion Criteria

1. Has, in the investigator's opinion, any disease or condition that would preclude accurate radiographic evaluation of any treated vertebrae (eg, morbid obesity)
2. Active systemic infection or infection at the operative site
3. History of, or anticipated treatment for, active systemic infection, including HIV or Hepatitis C
4. Previous trauma to the C3 to C7 levels resulting in significant bony or disco-ligamentous cervical spine injury that may prevent device placements
5. A prior spine surgery or pseudoarthrosis at the operative levels
6. Axial neck pain in the absence of other symptoms of radiculopathy or myeloradiculopathy justifying the need for surgical intervention
7. Symptomatic DDD or significant cervical spondylosis at more than 3 levels
8. Diagnosis of spondylolisthesis, grade >2
9. Overt (Segmental) instability measured as a movement on dynamic flex/ext X-rays >3.5 mm
10. Congenital bony and/or spinal cord abnormalities that affect spinal stability
11. Diagnosis of Paget's disease, osteomalacia, or any other metabolic bone disease other than osteopenia
12. Osteoporosis, defined as either the SCORE or MORES  $\geq 6$  and a DEXA bone density measured T-score of  $\leq -2.5$
13. Active malignancy or a history of any invasive malignancy (except non-melanoma skin cancer), unless treated with curative intent and without clinical signs or symptoms of the malignancy for at least 5 years
14. Has an uncontrolled seizure disorder
15. Use of epidural steroids within 14 days prior to surgery
16. A concomitant condition requiring daily, high-dose oral and/or inhaled steroids  
High-dose steroid use is defined as:
  - a. Daily, chronic use of oral steroids of 5 mg/day or greater
  - b. Use of short-term (less than 10 days) oral steroids at a daily dose greater than 40 mg within one month of the study procedure
17. Known allergy to titanium (Ti)
18. Fixed or permanent neurologic deficit related to the target treatment levels that cannot be improved with surgical decompression
19. Has, in the Investigator's opinion, any disease or condition that would preclude accurate clinical evaluation (eg, neuromuscular disorders)
20. Is pregnant or nursing at time of screening, or with plans to become pregnant within the next 3 years
21. A current or recent history ( $\leq 1$  year prior to screening) of substance abuse (alcoholism and/or narcotic addiction) that required treatment
22. Long-term use ( $>6$  months) of opioids (max. daily amount=120 mg morphine equivalents)

# Appendix

## Exclusion Criteria

- 23. A mental illness or belongs to a vulnerable population, as determined by the investigator (eg, prisoner or developmentally disabled), that would compromise ability to provide informed consent or compliance with follow-up requirements
- 24. Any other condition or anatomy (eg, fused facet) that makes posterior fusion treatment infeasible
- 25. Use of any other investigational drug or medical device within the last 30 days prior to surgery
- 26. A pending personal litigation relating to spinal injury (worker's compensation is not exclusionary)
- 27. Anticipated or potential relocation greater than 50 miles that may interfere with completion of follow-up

## Adverse Events: Detailed Summary

|                                                           | ACDF<br>(N=103) | CCF WITH<br>PCSS (N=99) |
|-----------------------------------------------------------|-----------------|-------------------------|
| <b>Any AE related to CCF or ACDF, P=0.005</b>             | 65.0%<br>(67)   | <b>45.5%</b> (45)       |
| <b>Any Serious AE related to ACDF Procedure or Device</b> | 24.3%<br>(25)   | <b>5.1%</b> (5)         |
| <b>Any Serious AE related to CCF Procedure or Device</b>  | —<br>—          | <b>5.1%</b> (5)         |

CCF with PCSS did not increase the risk of Adverse Events (AE) compared to ACDF alone.

## Subsequent Surgical Interventions at the Index Level: Procedure Details

Table 47: Summary of SSI classification by assignment

|             | Total SSIs | Revision      | Removal         | Supplemental Fixation | Reoperation   |
|-------------|------------|---------------|-----------------|-----------------------|---------------|
| <b>ACDF</b> | 23         | 1 (4.4%)      | 0 (0%)          | 22 (95.7%)            | 0 (0%)        |
| <b>CCF</b>  | <b>1</b>   | <b>0 (0%)</b> | <b>1 (100%)</b> | <b>0 (0%)</b>         | <b>0 (0%)</b> |

Table 48: Summary of SSI indication by assignment

|             | Total SSIs | Pseudarthrosis           | Adjacent Disc Disease | C5 Palsy        | Other <sup>ll</sup> |
|-------------|------------|--------------------------|-----------------------|-----------------|---------------------|
| <b>ACDF</b> | 23         | 20 <sup>**</sup> (87.0%) | 1 (4.4%)              | 0               | 2 (8.7%)            |
| <b>CCF</b>  | <b>1</b>   | <b>0 (0%)</b>            | <b>0 (0%)</b>         | <b>1 (100%)</b> | <b>0 (0%)</b>       |

<sup>ll</sup>Correct kyphosis; provide additional decompression.

<sup>\*\*</sup>16 subjects treated according to protocol defined cross-over procedure.

## FUSE Study US Enrollment Sites

| Enrollment Site                                 | Investigator                               | Location          |
|-------------------------------------------------|--------------------------------------------|-------------------|
| <b>Strenge Spine Center</b>                     | K. Brandon Strenge, MD                     | Paducah, KY       |
| <b>Inspira Health Network</b>                   | Rahul Shah, MD, FAAOS                      | Vineland, NJ      |
| <b>Specialists Hospital Shreveport</b>          | Pierce Nunley, MD                          | Shreveport, LA    |
| <b>Pinehurst Surgical</b>                       | Daniel Williams, MD & Alexander Lemons, MD | Pinehurst, NC     |
| <b>Lifebridge Health</b>                        | Omar A. Zalatimo, MD, MPH, MHA, FAANS      | Baltimore, MD     |
| <b>Spine Colorado</b>                           | Ryan Martyn, MD and Doug Orndorff, MD      | Durango, CO       |
| <b>Baylor College of Medicine</b>               | Alexander Ropper, MD and David Xu, MD      | Houston, TX       |
| <b>UNC Hospitals Spine Center</b>               | Cheerag Upadhyaya, MD and Deb Bhowmick, MD | Chapel Hill, NC   |
| <b>Thomas Jefferson</b>                         | Joshua Heller, MD, MBA                     | Philadelphia, PA  |
| <b>Rush University</b>                          | Harel Deutsch, MD                          | Chicago, IL       |
| <b>Golden State Orthopaedics and Spine</b>      | Sandeep Gidvani, MD                        | Mountain View, CA |
| <b>University Medical Center, New Orleans</b>   | Gabriel Tender, MD                         | New Orleans, LA   |
| <b>Scripps Memorial</b>                         | Timothy Peppers, MD and Jamieson Glenn, MD | San Diego, CA     |
| <b>Beaumont Health</b>                          | Daniel Fahim, MD                           | Royal Oak, MI     |
| <b>Atlantic Neurosurgical</b>                   | Jeffrey Beecher, DO                        | Wilmington, NC    |
| <b>Barrow Neurological Institute</b>            | Juan Uribe, MD                             | Phoenix, AZ       |
| <b>The Bone and Joint Clinic of Baton Rouge</b> | Kevin McCarthy, MD                         | Baton Rouge, LA   |
| <b>Kansas Spine &amp; Specialty Hospital</b>    | Raymond Grundmeyer, MD                     | Wichita, KS       |

## Important Safety Information

The FUSE Clinical Study aims to redefine the standard of care for this prevalent condition through rigorous scientific inquiry and innovative treatment approaches. <https://clinicaltrials.gov/study/NCT04229017>

CORUS™ PCSS is posterior spinal instrumentation with integrated screw fixation intended to provide immobilization and stabilization of spinal segments.

CORUS™ PCSS is placed through a posterior surgical approach in up to 3 consecutive levels of the cervical spine (C3-C7) and achieves bilateral facet fixation by spanning the facet interspace at each level with points of fixation at each end of the construct.

CORUS™ PCSS is intended as an adjunct to posterior cervical fusion (PCF) and is only intended to be used in combination with an anterior cervical discectomy and fusion (ACDF) at the same level(s).

CORUS™ PCSS is indicated for skeletally mature patients with degenerative disc disease (DDD). DDD is defined as radiculopathy and/or myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies.

CORUS™ PCSS is to be used with autogenous bone and/or allogenic bone graft.

**[View safety information at providencemt.com/safety.](http://providencemt.com/safety)**



[www.providencemt.com](http://www.providencemt.com)